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Abstract: The present work focuses on the in-silico investigation of the steady-state blood flow in
straight microtubes, incorporating advanced constitutive modeling for human blood and blood
plasma. The blood constitutive model accounts for the interplay between thixotropy and elasto-visco-
plasticity via a scalar variable that describes the level of the local blood structure at any instance.
The constitutive model is enhanced by the non-Newtonian modeling of the plasma phase, which
features bulk viscoelasticity. Incorporating microcirculation phenomena such as the cell-free layer
(CFL) formation or the Fåhraeus and the Fåhraeus-Lindqvist effects is an indispensable part of
the blood flow investigation. The coupling between them and the momentum balance is achieved
through correlations based on experimental observations. Notably, we propose a new simplified
form for the dependence of the apparent viscosity on the hematocrit that predicts the CFL thickness
correctly. Our investigation focuses on the impact of the microtube diameter and the pressure-
gradient on velocity profiles, normal and shear viscoelastic stresses, and thixotropic properties. We
demonstrate the microstructural configuration of blood in steady-state conditions, revealing that
blood is highly aggregated in narrow tubes, promoting a flat velocity profile. Additionally, the proper
accounting of the CFL thickness shows that for narrow microtubes, the reduction of discharged
hematocrit is significant, which in some cases is up to 70%. At high pressure-gradients, the plasmatic
proteins in both regions are extended in the flow direction, developing large axial normal stresses,
which are more significant in the core region. We also provide normal stress predictions at both the
blood/plasma interface (INS) and the tube wall (WNS), which are difficult to measure experimentally.
Both decrease with the tube radius; however, they exhibit significant differences in magnitude and
type of variation. INS varies linearly from 4.5 to 2 Pa, while WNS exhibits an exponential decrease
taking values from 50 mPa to zero.

Keywords: blood flow; blood thixotropy; blood viscoelasticity; aggregation; rouleaux; hemodynam-
ics; microtubes; relaxation time; CFL; Fåhraeus effect; plasma viscoelasticity; wall shear & normal
stresses; interfacial shear & normal stresses; personalized hemorheology

1. Introduction

Understanding blood flow is of high theoretical and practical importance as it is
directly associated with the pathophysiology and the development of diseases such as
endotheliitis, microangiopathy, COVID-19 [1,2] in the microvasculature of any human
being. Consequently, a consistent dynamic model is necessary for assessing the hemody-
namic resistance and its regulation in the microcirculation [3]. We have already developed
an integrated constitutive model of blood rheology in our recent work [4]. Blood has a
pronounced non-Newtonian character, primarily attributed to aggregation, disaggregation,
deformation, orientation, and migration of the erythrocytes [5–9]. Our model encom-
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passed all the crucial aspects of blood rheology, including yield stress [10,11], thixotropic
effects [12–14], viscous dissipation, and elasticity, which are associated with the aggre-
gation/disaggregation of the erythrocytes [15,16]. The latter features are accompanied
by the introduction of a microstructural state indicator that dynamically responds to the
stresses currently present in the system. Our model was fitted to existing steady and
transient experiments and predicted basic rheometric flows such as intermittent shear
steps, LAOS, triangular shear step, and uniaxial flow. However, a consistent constitutive
stress model for blood is insufficient to adequately describe blood flow in microtubes where
hemodynamical phenomena occur [3].

Turning from rheometric to even one-dimensional flows gives rise to some of the
prominent phenomena in the microscale that can be observed both in vitro and in vivo.
These are the Fåhraeus–Lindqvist [17] and Fåhraeus [18] effects. The Fähraeus effect ac-
counts for the reduction of the bulk hematocrit, whereas the Fähraeus-Lindqvist effect for
the decrease in the apparent viscosity. They are interrelated and caused by the cross-stream
migration of RBCs in tube flow, leading to a two-phase configuration [19] consisting of
an RBC-rich central region and a cell-depleted annular layer adjacent to the microtube
wall [3,20–22]. The latter region is interchangeably called the Cell-Free Layer (CFL) or
the Cell-Depleted Layer (CDL) [5], and it is a well-known hemodynamic feature in mi-
crocirculation. The lateral migration of RBCs in microcirculation is governed by cell-wall
hydrodynamic interactions, which drive the cells away from the wall, and by cell-cell hy-
drodynamic interactions, which tend to disperse back the RBCs [23] from low shear regions
to high shear regions. This is not exclusively a blood flow phenomenon, but it is also
observed in polymeric solutions, where it is called stress-gradient induced migration [24]
or in the electro-osmotic transfer of polymeric chains [25].

The CFL thickness depends on the tube diameter [26], the concentration of RBCs (the
systemic hematocrit, which ranges widely with the age and the sex from 35% to 45%) [27],
and the flow rate [28]. When the CFL thickness increases, the apparent blood viscosity
decreases [3]. RBC aggregation can enhance the lateral migration, increasing the CFL
thickness, although increased cell-to-cell interactions (due to increased cell packing) can
counter this effect to some extent. Also, CFL plays a pivotal role in the microvascular
network as a lubricating layer since it reduces the friction between the RBC core and the
vessel wall, as observed both in vivo [29] and in vitro [21,30] flows. The CFL has another
prominent role since it also acts as a barrier between the tube and vascular beds, thus it
also supports biochemical processes. For example, a wider CFL increases the Nitric Oxide
(NO) diffusion path to be scavenged by hemoglobin in the RBCs. It also affects oxygen
delivery from the RBCs to the tissue [31,32]. Consequently, an accurate determination of the
thickness of the plasma layer near the wall is necessary for a blood flow study, especially
when the examined range of this cross-sectional distance is similar to the arterioles size.

Regarding the effect of RBCs aggregability on the axial velocity profile [33,34], most
of the basic investigations have conducted experiments in straight tubes or performed
measurements in arterioles, highlighting the bluntness of the velocity profiles [35]. It has
been shown that aggregation factors assist the migration of RBCs, causing the development
of blunt velocity profiles and increased viscosity in the core flow region [22,36–40]. The
latter phenomenon is more pronounced in low shear-rates, as it was stated by Cokelet
and Goldsmith [21], who quantified the interplay between aggregation and hydrodynamic
resistance to flow. Similar conclusions have been drawn by Sherwood et al. [41]. They
studied the spatial variation of the CFL in bifurcating microchannels in conjunction with
the aggregation effect on the local velocity configuration experimentally.

The in vivo data are limited [33,34,40]. All relative works conclude that the correlation
between hematocrit, RBC agglomeration, and CFL formation is much more complicated. In
the vasculature, vessels exhibit multiple bifurcations, leading to non-uniform velocity and
cell distributions, and consequently, the aggregation effects in more complex geometries
require further elucidation [42].
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Previous mathematical models [26,43] treated both fluid phases as generalized Newto-
nian fluids, which is a quite simplified approach for blood flows in microtubes. Das et al. [44]
proposed a two-phase Casson model to describe the in vitro velocity profiles of blood flow
in low flow rates, while Sriram et al. [27] adopted the well-known Quemada model [45] for
the determination of the CFL thickness under various rheological conditions. More recently,
Moyers-Gonzalez and Owens [46] used principles of the kinetic theory to derive a non-
homogeneous hemorheological model, which was applied for the evaluation of the CFL
thickness using empirical laws for the reduction of the hematocrit within the microtube. The
model was adopted for the first time in multidimensional flows by Dimakopoulos et al. [47].
Another approach is through multi-particle flow models [48–52], which can also give accu-
rate predictions of local variation of the CFL width, with the major drawback being the
high computational cost. Additionally, Qi et al. [53] and Narshimhan et al. [54] based on
a coarse-grained theory predicted migration effects and the erythrocytes concentration
along with the CFL layer in Couette flow and pressure-driven flow in tubes. This model
takes into consideration the wall-induced hydrodynamic lift and the cell-cell interactions,
predicting the Fähraeus-Lindqvist effect.

In this work, we combine both hemorheological features in a comprehensive mathe-
matical formulation for the two-phase blood flow in microtubes. We invoke a thixotropic
elasto-visco-plastic (TEVP) constitutive model to accurately predict the stresses in the blood
in the RBC-rich central region. This model is described in detail in our previous work [4]
and fitted on the steady and transient experimental data of McMillan et al. [55]. Following
experimental evidence, the plasma phase is treated as a viscoelastic fluid, represented by the
linear form of the well-known Phan-Tien-Tanner (or PTT) model. Through our advanced
modelling, we try to address some of the open questions in microcirculation regarding the
various migration mechanisms and the complex microstructure of blood. Particularly, we
investigate the interplay between aggregation and the formation of the cell-free layer and
the effect of aggregability on velocity profiles in microtubes with cross-sections comparable
to the RBC diameter. Moreover, we examine the intensity of the migration and how it is
affected by the diameter of the tube or the imposed pressure gradient. Additionally, we
examine the distribution of the relaxation times of blood within the tube along with the
aggregation size, which varies with the available space. Finally, we predict the normal and
shear viscoelastic stresses in the flow field and how the rheological conditions affect the
thixotropic microstructural state of blood.

Our contribution is divided into four sections: In Section 2, we briefly describe the
problem formulation, the hemodynamic constraints, and the Thixotropic Elasto-Visco-
Plastic (TEVP) constitutive modeling of the whole blood and the viscoelastic modeling
of the plasma phase. Section 3 presents the validation of our model with experimental
data. A thorough parametric analysis follows in Section 4, which describes the effect of the
rheological parameters on blood behavior extensively.

2. Problem Formulation

We consider the transient blood flow in two separate regions (i = 1,2), one for the RBC
rich core (i = 1), placed at the center of the microtube, and a second one for the plasma layer,
placed adjacent to the microtube’s wall (i = 2) (Figure 1). The momentum balance for the
two-phase blood/plasma flow of density ρ(i) in a microtube of radius R is then written as

ρ(i)

∂U
−
(i)

∂t
+ U
−
(i)·∇
−

U
−
(i)

 = ∇
−
·σ
=

(i) (1)

where U
−
(i) is the velocity vector, σ

=
(i) is the total stress tensor divided into an isotropic

pressure and an extra stress as σ
=
(i) = −p(i) I

=
+ τ

=
(i) with I

=
being the identity matrix.
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Figure 1. Schematic representation of a microtube of a radius R. It consists of a central RBC-rich
region of radius δ, and an annular layer full of plasma and adjacent to the tube wall of thickness
w = R− δ.

Due to the different composition of each layer, we assume a different constitutive
model for each phase. For the blood core, its modeling is based on the formulation reported
in our tensorial TEVP form [4] and especially for the blood constitutive modeling. In this
recent work, we invoked a consistent and validated model for TEVP materials proposed
by Varchanis et al. [56], which features a coupling of the tensorial constitutive model by
Saramito [57] for EVP materials with thixotropy. Another form of the proposed TEVP
formulation, without thixotropy, was recently used to evaluate the transition between the
solid and liquid state of elasto-viscoplastic fluids under extensional flow [58]. In addition,
we assume a viscoelastic behavior for the proteinic plasma phase (CFL), which is mostly
determined by fibrinogen concentration. The starting point is the decomposition of the
extra stress tensor τ

=
(i) to solvent and viscoelastic terms as

τ
=

(i) = τ
=n

(i) + τ
=ve

(i) (2)

Regarding the modeling of the RBC-rich region, our model accounts for the viscoelastic
contribution of the RBCs and the viscoelasticity of blood plasma since it has been fitted
to high-shear rate plateau [4]. Consequently, there is no explicit Newtonian contribution
( τ
=n

(1) = 0) as long as the solvent (plasma) is included in the viscoelastic term (τ
=ve

(1) ).

Additionally, the presence of plasma proteins [59,60] dominate the stress contribution in
the pure plasma phase (CFL), and hence the Newtonian contribution (water) is assumed to
be negligible there as well τ

=n
(2) = 0.

2.1. Whole Blood Constitutive Modeling

The total rate of deformation tensor is decomposed into an elastic contribution D
=e

(1)

and a viscoplastic one D
=vp

(1) so that

D
=

(1) = D
=e

(1) + D
=vp

(1) (3)

The elastic term of the total deformation rate tensor D
=e

(1) accounts for memory effects

and can be written as

D
=e

(1) =
1

2 G

∇
τ
=

(1)
ve

(4)

where the upper-convected time derivative is
∇
τ
=
(1)
ve

=
∂τ
=
(1)
ve

∂t +U
−
(1)·∇
−
τ
=
(1)
ve
−
(
∇
−

U
−
(1)
)T
·τ
=
(1)
ve
−

τ
=
(1)
ve
·
(
∇
−

U
−
(1)
)

, while G denotes the elastic modulus of blood. The effect of plasticity is
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introduced via a multiplication of specific functions and contributions given by the expres-
sion

D
=vp

(1) = f
[

tr
(
τ
=

(1)
ve

)]
max

0,

∣∣∣∣τ=(1)
ve

∣∣∣∣− τy

2 ηt

∣∣∣∣τ=(1)
ve

∣∣∣∣
τ=(1)

ve
(5)

where f
[

tr
(
τ
=
(1)
ve

)]
is a stress-related l-PTT function,

∣∣∣∣τ=(1)
ve

∣∣∣∣ is the magnitude of the stress

tensor, ηt is the plastic viscosity, and τy is the blood yield stress (see [4]). The l-PTT function
is defined as

f
[

tr
(
τ
=

(1)
ve

)]
= 1 + εPTT

tr
(
τ
=
(1)
ve

)
G

(6)

where εPTT is a fitted parameter, introducing shear-thinning along with bounding of
the extensional viscosity. Given that the total rate of deformation tensor is equal to

D
=

(1) = 1
2

[
∇
−

U
−
(1) +

(
∇
−

U
−
(1)
)T
]

and combining Equations (3)–(6), we get the final form of

the constitutive equation

∇
τ
=

(1)
ve

+ 2 G f
[

tr
(
τ
=

(1)
ve

)]
max

0,

∣∣∣∣τ=(1)
ve

∣∣∣∣− τy

2 ηt

∣∣∣∣τ=(1)
ve

∣∣∣∣
τ=(1)

ve
= 2G D

=

(1) (7)

The time evolution of the structure (or rouleaux) parameter is then given by
Wei et al. [61] as

dλ
dt

= (k1 + k2ϕ
n1)(1− λ) − k3ϕ

n2λn3 (8)

The first term in the RHS of Equation (8) represents the rebuilding of rouleaux, while
the second one refers to the disintegration process. We base the dependency of the level of
structure explicitly on the stresses, via the parameter ϕ [61]

ϕ = max
(

0,
∣∣∣∣τ=(1)

ve

∣∣∣∣− τy

)
(9)

Yielding occurs when ϕ > 0, and this is the von Mises criterion. The plastic viscosity
of blood ηt(λ) is a thixotropy-dependent variable via the structural variable λ

ηt(λ) = η0λ
m1 (10)

where η0, m1 are fitting parameters. Similarly, we can define the relaxation time of blood,
χ, as the ratio of the plastic viscosity to the shear modulus as

χ(λ) = χ0λ
m1 , χ0 =

η0
G

(11)

To extract realistic values for the set of the parameters of the constitutive model, we
adopt a non-linear regression procedure [62] on experimental data for steady-state and
transient experiments. The steady-state experiment is the simple shear flow one providing
the shear stress response as a function of the imposed shear rate. Our model is fitted
on the experimental data of McMillan et al. [55] for a hematocrit equal to 45%, and the
set of the adjustable parameters (eleven in number) are reported in Table 1, along with
the nomenclature.
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Table 1. Fitted rheological parameters of the TEVP model on steady and transient experimental
hemorheological data reported in [55].

Symbol Name of Variable Units Values

G Elastic modulus Pa 0.382
η0 Plastic viscosity Pa·s 0.012
τy Yield stress Pa 0.0035
εPTT Extensional viscosity limiter − 0.001
k1 Brownian collisions scale s−1 0.0918
k2 Shearing scale sn1−1 7.249
k3 Breakdown scale sn2−1 6974.9
n1 - − 3.03
n2 - − 4.068
n3 - − 3.03
m1 Plastic viscosity thixotropic scale − 0.701

Alternatively, a modified form of the Casson model [63] is commonly used to simulate
blood behavior under steady-conditions. It encompasses the property of the yield stress
along with the shear-thinning description of blood and is given by√

τ
(1)
rz (

.
γrz) =

√
τy +

√
µ

√
.
γ
(1)
rz (12)

where τy and µ are the yield stress and the viscosity, respectively, while they both are fitted
to the steady state experimental data of McMillan et al. [55] and tabulated in Table 2. A
generalized Newtonian constitutive model, such as the Casson model [63], needs only
steady state experiments so as for the adjustable parameters to be determined. A plethora
of steady shear experiments with different hematocrits reported in the literature, enables
the extraction of a mathematical correlation between core and discharged hematocrit.

Table 2. Fitted rheological parameters of the Casson model on steady experimental data reported
in [55].

Symbol Name of Variable Units Values

τy Yield Stress Pa 0.0033
µ Viscosity Pa·s 0.00389

2.2. Plasma Constitutive Modeling

Although in most investigations, blood plasma has been considered a Newtonian fluid,
recent shear and extension dominated flow experiments prepared by Brust et al. [59] re-
vealed that blood plasma features bulk viscoelasticity. They reported phenomena that have
been widely studied, both experimentally and theoretically, in polymeric solutions [64–66],
clearly indicating that human blood plasma has viscoelastic properties. In contrast to
Newtonian fluids, blood plasma exhibited a shear-thinning viscosity. Despite the evidence
of the existence of blood plasma viscoelasticity, only a few investigations take this into
account, such as the work of Varchanis et al. [60], who provided a complete data set of
the rheometric material functions of plasma rheology in simple shear and elongational
flows. Finally, combining their results with previous in vivo measurements, they addi-
tionally found that the viscoelasticity of human blood plasma must not be ignored when
examining the flow of whole blood in micro-tube, such as arterioles or capillaries. Conse-
quently, we adopt viscoelastic constitutive modelling via the Phan-Thien-Tanner (or PTT)
model [67–69]. The model is an extension of the Maxwell model accompanied with the
upper convected derivative to include a function dependent upon tr(τ

=
(2)
ve

), the trace of the
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viscoelastic stress tensor due to plasma proteins. The tensorial form in steady state and
fully developed flow is then given by

∂τ
=
(2)
ve

∂t
+

(
1
λpl

+
εPTT,pl

ηpl
tr(τ

=

(2)
ve

)

)
τ
=

(2)
ve

+

[
(∇
−

U
−
(2))

T
·τ
=

(2)
ve
− τ

=

(2)
ve
·∇
−

U
−
(2)
]
= 2

ηpl

λpl
D
=

(2) (13)

where λpl is the relaxation time of plasma and ηpl is the viscosity of plasma, which are
both adjustable parameters while εPTT,pl is the PTT parameter which is responsible for
bounding the extensional viscosity. Fitting the l-PTT formula to the data reported in [60],
we extract the parameters of the model illustrated in Table 3. The one-dimensional forms
of the above equations are presented in detail in Appendix A.

Table 3. Parameters exported by the non-linear fitting of the linear-PTT model to plasma data [60].

Parameter Name of Variable Units Value

λpl Relaxation time s 12.67× 10−5

εPTT,pl Extensional viscosity limiter − 5× 10−5

ηpl Plasma viscosity Pa ·s 1.9× 10−3

2.3. Hemodynamical Constraints

The model presented above is not complete, and its equations cannot be solved unless
the location of the core/plasma interface or the core radius δ, can be determined. Hence,
this location must be computed along with all the other unknowns, making this a moving
boundary problem. To calculate it, we need to estimate the impact of the hemorheological
parameters on the velocity and stress fields by introducing hemodynamical constraints,
which quantify major microcirculation effects [70]. As such, we refer to the Fähraeus [71]
and Fähraeus-Lindqvist [17] phenomena. Both are related to the increase of the CFL
thickness as the tube radius decreases, attributed to the increasing tendency of the RBCs to
migrate towards the center of the vessel [72]. Unfortunately, neither effect can be predicted
using first principles, so we have to rely on experiments and develop suitable correlations.
The Fähraeus effect is the reduction of the bulk hematocrit, whereas the Fähraeus-Lindqvist
effect accounts for the decrease in the apparent viscosity (ηapp).

Before presenting these correlations, we need to clarify the different existing definitions
of the hematocrit, which represents the volume fraction of RBCs in whole blood expressed
as a percentage. Namely, these are the discharged hematocrit Hd, the tube hematocrit, Ht,
and the core hematocrit, Hc. The discharged hematocrit is the velocity-weighted average
of the local volume fraction of the erythrocytes given by

Hd =

∫ R
0 H(r) Uz(r) r dr∫ R

0 Uz(r) r dr
(14)

where H(r) is the local volume fraction of RBCs across a section of the tube. Discharged
hematocrit is a measure of its bulk value accounting for the fact that the local volume
fraction at a specific radial position is carried by the local axial velocity, which also varies
radially. Since the higher RBC concentration is near the tube center due to cell aggregation
and it is carried by the higher local velocity, Hd is larger than Ht, which is defined next.
The tube hematocrit, Ht represents the average hematocrit within the vessel, assuming that
the velocity has a plug-flow (radially constant) profile. Hence, Ht is given by

Ht =

∫ R
0 H(r) r dr∫ R

0 r dr
(15)
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In general and in this work, given that the RBC migration away from the wall leads to
a considerable decrease of the local viscosity, which cannot be described due to the absence
of any realistic differential model, we assume that H(r) follows a simple distribution

H(r) =


Hc r ∈ [0, δ]

0 r ∈ [δ, R]
(16)

which assigns a constant value to the hematocrit in the core region denoted by Hc and a
zero value in the CFL. If we substitute Equation (16) into Equation (15), we readily get a
linear relationship between Ht and Hc given by

Hc = Ht

(
R
δ

)2
(17)

where δ is the core radius shown in Figure 1. Similarly, Hd can be related to Hc using a
simple mass balance of RBCs in any cross-section

Hd

 δ∫
0

U(1)
z (r) r dr +

R∫
δ

U(2)
z (r) r dr

 = Hc

δ∫
0

U(1)
z (r) r dr (18)

The difference between the three types of hematocrit diminishes, i.e. Ht ≈ Hc ≈ Hd
as δ/R→ 1 . Tube and core hematocrits are forms that have been introduced exclusively in
arteriolar blood flows.

Next, we rely on extensive experimental observations to quantify macroscopic hemo-
dynamical properties [73,74] and develop the necessary correlations as follows. The
Fähraeus-Lindqvist effect has been examined in detail by Pries and Secomb [73]. To this
end, a series of experiments has been undertaken for different hemodynamical conditions
(i.e., vessel diameter, discharged hematocrit, etc.). The non-Newtonian blood flow has
been correlated with the well-known Hagen–Poiseuille law for laminar flow of Newtonian
fluids in a tube. To match the blood flow data given in [73], the relationship of the flow-rate
with the pressure-drop for different tube diameters is revised as follows

Q =
JD4

128 ηrel ηpl
(19)

where Q and J are the volume flow rate and pressure gradient, respectively, and ηrel is
the relative apparent viscosity (= ηapp/ηpl). For a tube of a given diameter, Q, J and ηpl
are measured, and Equation (19) is used to determine ηrel. Then, we invoke the Fähraeus-
Lindqvist phenomenon, i.e., the strong dependence of ηrel on the tube diameter and the
discharged hematocrit (Hd), by the empirical law derived from the experiments conducted
in glass tubes by Pries and Secomb [73]. This is a three-part relationship, which is relatively
complicated, and hence, we have replaced it with our simplified form (the so called GDAT
model) given by a single equation after a non-linear fitting on experimental data [73], which
is provided by

ηrel(Hd, D) = 1.012
(

3.2972
D

) 20.29 Hd
D

(20)

where D is the tube diameter in µm. A more detailed description of this relationship and
comparison with the original form of Pries and Secomb [73] (Equations (A11)–(A13)) is
presented in Appendix B.

Equation (18) determines Hd. Measurements of the tube hematocrit are typically
reported relative to the discharged hematocrit, i.e., the ratio Ht/Hd is measured. This ratio
is related to the Fähraeus effect and was measured experimentally by Pries et al. [74] for
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different values of the discharged hematocrit and a wide range of tube diameters. The
relationship that describes this ratio is a function of Hd and R (in µm) and is given by

Ht(Hd, R)
Hd

= Hd + (1−Hd)
(

1 + 1.7e−0.7R − 0.6e−0.022R
)

(21)

Equation (21) determines Ht and combing its value with the value of Hd and Equa-
tion (17) yields the CFL thickness. We discretize the above system of equations (Equa-
tions (1)–(21)) using central finite differences [75] in space and a backward Euler scheme
for their time integration. Since we assume that the location of the interface (δ) is part of
the solution, we deal with a moving boundary problem and hence we need to introduce a
linear spatial transformation to solve the system in a fixed domain. The one-dimensional
forms of the entire equation set, along with the boundary conditions, are presented in detail
in Appendix A.

Although we present the steady-state values, our model is inherently transient, and
thus all the predictions must be obtained through a transient solution. For all the examined
cases, we assume an initially unperturbed and unyielded state (λ|t=0 = 1), while the stress
and the velocity field are equal to zero (τve|t=0 = 0, Uz|t=0 = 0), as it is described in detail
in Appendix C.

3. Validation

Initially, we need to validate the predictions of our model against relevant flows
reported in the literature. It must be pointed out that throughout the validation procedure,
the examined flow conditions do not exactly match those of the corresponding experiments
regarding the hematocrit value. As described in Section 2 and ref. [4], the parametrization
of the TEVP model in this study corresponds to a rheological description of blood with
a bulk hematocrit equal to 45%, and thus, the simulations are implemented by using a
constant core hematocrit equal to this value. Most of the investigations assume a constant
Hd rather than a constant Hc. In the following Figures, blue solid curves represent the
steady-state predictions of our TEVP model, while the symbols are data obtained by
experimental studies.

Firstly, our predictions for velocity profiles are compared with experimental micro-PIV
measurements of human blood flow in glass tubes. We select experimental data where
flow conditions are close enough to ours regarding the core hematocrit Hc. Apparently,
this is a challenging task since the literature lacks systematic works that present complete
hemorheological data and hemodynamical measurements. To this end, we compare our
steady-state results with those reported in the work of Bugliarello and Sevilla [76] for two
cross-sections with different hemorheological conditions. Results under steady conditions
are shown in Figure 2a,b for a discharged hematocrit equal to 40% in arterioles of 20 µm
and 35 µm radius, respectively, while our simulation is under a constant core hematocrit
value equal to 45%. Additionally, the experiments are conducted for an imposed mean
axial velocity equal to Umean = 13 mm/s and Umean = 3.8 mm/s for 20 µm and 35 µm
radius, respectively. Despite the somewhat different values of core hematocrit, our model is
in excellent agreement with the experimental observations for both radii. We also provide
the predictions of the Casson model [63] for the aforementioned experiments. We can
observe that the predictions of the Casson model are not quantitatively good, especially
for the case of R = 35 µm, where the predicted velocity profile is more plug-like than
that observed in the experiments. Additionally, the predictions of the inelastic Casson
model are not close enough to the experimental observation regarding the CFL thickness.
This is more obvious in Figure 2a,b where the CFL thickness is highlighted with light red,
yellow and grey for the Casson, TEVP and experimental value, respectively. Indicatively,
for the flow field in a microtube with a radius equal to 20 µm the predictions for the CFL
thickness are 5.2 µm, 3.3 µm of the Casson and the TEVP models, while the corresponding
values for the case of 35 µm radius, they are 5.25 µm and 3.85 µm, respectively. Our model
is in excellent agreement with experimental observations of the CFL as Bugliarello and
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Sevilla [76] reported in their work that the CFL thickness is 3.3 µm and 3.36 µm for 20 µm
and 35 µm tube radius, respectively. On the contrary, the predictions of the CFL thickness
by the Casson model are not as good. In Table 4 we provide the predictions of our model
for CFL thickness (w), flow rate (Q), Interfacial Normal (INS) and Shear Stresses (ISS), Wall
Normal Stress (WNS) as well as the Wall Shear Stress (WSS) regarding the simulations with
20 µm and 35 µm radius, respectively.

Table 4. Model predictions for CFL thickness (w), flow rate (Q), Interfacial Normal Stress (INS), Interfacial Shear Stresses
(ISS), Wall Shear Stress (WSS), and Wall Normal Stress (WNS) for microtubes with a radius equal to 20 µm and 35 µm.

Parameter Name of Variable Units Values for R = 20 µm Values for R = 35 µm

w CFL thickness µm 3.3 3.85
ISS Interfacial shear stress Pa 1.4 0.67
INS Interfacial normal stress Pa 0.45 0.23
WSS Wall shear stress Pa 1.67 1.04
WNS Wall normal stress Pa 3.23 2.38

Q Flow rate mm3/s 2.59× 10−3 4.67× 10−4

In Figure 2c, we compare our numerical predictions for the dimensionless thickness of
the cell-free peripheral layer with those experimentally observed [5,77,78] for a discharged
hematocrit equal to 45%, and a pressure gradient J = 104 Pa/m. The experimental points
refer to tube diameters ranging from 30.8 µm and 132.3 µm with a pseudo-shear-rate
varying between 5.38 s−1 and 15.91s−1, respectively. Our model captures very accurately
the observed decrease in the relative CFL thickness (w/R), when the microtube radius
increases, depicting an overall deviation of about 2%. This discrepancy is quite insignificant
if one considers that our simulation encompasses a constant Hc, while the experiments
employ a constant Hd. In the same Figure we provide the predictions of a Newtonian
model [26], the model of Casson [63], and the model proposed by Moyers-Gonzalez and
Owens [46] for the normalized CFL thickness. It is evident that our model provides more
accurate results compared to those predicted by the other models. Although both the
Newtonian and Casson models predict a similar behavior with that presented by our
model, they both deviate considerably from the experimental values throughout, and the
model of Moyers-Gonzalez and Owens [46] does not follow the trend of the experiments
for radii below 30 µm. All these are absolutely normal since Newtonian and Casson
models have only one and two adjustable parameters for the description of one or two
out of five major mechanisms of the rheological response of blood. On the other hand the
Owens’ model has eleven parameters as our TEVP model but it does not account for blood
plasticity making it inaccurate at low shear-rates. Definitely, the coupled appearance of
several viscous, elastic, plastic and thixotropic (RBC’s aggregation and disaggregation)
phenomena and the underlying mechanisms necessitates the introduction of an adequate
number of adjustable parameters to accurate represent their contribution in a thixotropic
elasto-visco-plastic (TEVP) model and consequently the study of hemodynamics.
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Figure 2. Validation of our model predictions with experimental data. Blue solid lines are steady-state
simulation results of our model while open circles and cubes are experimental measurements for
(a) velocity profile for R = 20 µm under the hemorheological conditions reported in Bugliarello and
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Sevilla [76], (b) velocity profile for R = 35 µm under the hemorheological conditions reported
in Bugliarello and Sevilla [76], (c) Normalized thickness of CFL from various experimental in-
vestigations [5,77,78] accompanied with the predictions of a Newtonian model [26], the model of
Casson [63] and Moyers-Gonzalez and Owens [46], (d) Total flow rate for the flow conditions reported
in Bugliarello and Sevilla [76] for R = 20 µm, (e) Comparison of wall shear stress predictions with
respect to pseudo shear rate

.
γ between TEVP and experimental observations from [79]. Comparison

of relative wall shear stress WSSrel for various pseudo shear rates
.
γ between TEVP, Casson models

and the experimental data from [80] for (f) R = 15 µm and (g) R = 50 µm.

Figure 2d illustrates the experimentally measured average volumetric flow rate of
blood with respect to the imposed pressure gradient for 40% of discharged hematocrit.
The experimental data are provided by the work of Bugliarello and Sevilla [76], and the
only available data which were close enough to our rheological conditions were those for
a microtube with a radius equal to 20 µm. The predicted flow-rate demonstrates a quite
good agreement with the experimental data with a small overestimation at low pressure
gradients. This deviation is mainly attributed to the presence of the migration effects,
which may provoke a considerable deviation in the hematocrit of the experiment to that
imposed by our simulation. In Figure 2e, we present the prediction of the Wall Shear
Stress (WSS) as a function of the imposed pseudo shear-rate

.
γ (Uaver/R) along with the

experimental observations of the same quantity reported in [79]. We observe that our
predictions demonstrate a similar behavior with that reported by Merill et al. [79] for a
hematocrit equal to 40% and R = 100 µm. In any steady, axisymmetric flow, the shear
stress is given by τrz = Jr

2 , where r is the radial position and J is the pressure gradient.
Consequently, the shear stress on the wall demonstrates a linear dependence on both
the pressure gradient and pseudo shear-rate. In experiments we observe a slight non-
linearity which is attributed to either the failure of the experimental techniques since WSS
it difficult to be measured accurately or the loss of axisymmetry (e.g., sedimentation of
RBCs). Figure 2f,g show the predictions of the relative wall shear stress (WSSrel) of the
TEVP and Casson models [63] along with the experimental measurements of Yang [80] for
horse blood flow with a hematocrit equal to 40%, in tubes with R equal to 15 µm and 50 µm,
respectively. According to Yang [80], the WSSrel is defined as the wall shear stress obtained
by the experiment

(
WSSexp

)
divided by the wall shear stress exerted on the tube wall by

the medium alone, i.e., blood in the absence of the RBCs
(

WSSplasma

)
. The latter quantity

can be derived from the Poiseuille law as WSSplasma = 2 ηplUmax/R. In Figure 2f,g, the
TEVP and the Casson parametrizations correspond to human blood with a hematocrit
equal to 45% [49]. Considering the different values of hematocrit and the difference in
the blood type, the predicted WSSrel of our TEVP model demonstrates a reasonably good
agreement with the experimental data for both radii. The larger deviation between TEVP
predictions and experimental data at low shear-rates can be attributed to the limitations of
Equations (20) and (21). Both expressions are valid only in the high shear-rate limit. On the
contrary, the Casson model always overestimates the TEVP prediction for the WSSrel.

4. Numerical Results

This section presents the predictions of our one-dimensional steady-state simulations
accounting for a continuous RBC-rich phase at the center of the tube and a plasma layer
placed adjacent to the microtube wall. Arterioles are typically varying from 10 µm to 80 µm
of radius, with a mean velocity of 2 mm/s. We perform a thorough parametric analysis
under a wide range of microtube radii from 10 µm to 250 µm. The flow is driven by either
a pressure gradient varying from 102 Pa/m to 105 Pa/m or a mean axial velocity Umean
ranging between 0.1 mm/s and 5 mm/s. The mean axial velocity is related to the total
flow rate Q by Q = Umean π R2. This model needs data from startup shear, cessation,
and steady rheometry (or LAOS etc.), which can hardly be found in the open literature.
Once the model parameters have been evaluated for a value of hematocrit (in this work is
45% given by McMillan’s experiments [55]), our hemodynamic simulations (e.g., flows in
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microcirculation) should consistently follow this restriction. Since blood flows only in the
core region of a vessel or a glass tube, the core hematocrit (neither the tube nor the discharge
hematocrit) should be equal to 45% in all cases. Typically, blood flow investigations in
which microcirculatory phenomena are included impose a constant discharged hematocrit
(Hd) rather than its core counterpart (Hc).

4.1. Comparison with an Inelastic Model

It is very useful to compare the results of our model with that of the Casson inelastic
model. In the following Figures, we present the predictions for both narrow and wide
microtube with cross-section equal to 10 µm and 40 µm, respectively. The imposed pressure
drop is J = 104 Pa/m. We can observe that the predicted velocity profiles for TEVP and
Casson models exhibit considerable discrepancies in the velocity profile (Figure 3a,b),
interfacial axial velocities (Figure 3c), and wall shear stress (Figure 3d). Regarding the
profile of the axial velocity, we can see that both models capture the non-parabolic profile of
the blood flow—a behavior which is consistent with experimental observations in vitro [33].
In narrow microtubes, both TEVP and Casson models predict a blunted profile (Figure 3a),
which gradually shifts towards parabolic as the radius of the tube increases (Figure 3b).
The TEVP model predicts a smaller CFL thickness compared to that predicted by Casson,
which in turn affects the maximum velocity prediction (Figure 3b). As we can see from
Figure 3c,d, the interfacial velocity Uint and the WSS predicted respectively by the TEVP
model are lower than those predicted by the inelastic model for R = 40 µm.

Figure 3. Comparison between the TEVP model with the inelastic model of Casson [63] regarding
the velocity profiles within a microtube for (a) R = 10 µm and (b) R = 40 µm, (c) Interfacial axial
velocity Uint as a function of the tube radius and (d) Wall Shear Stress (WSS) with respect to the
radius of the microtube. Here, Hc = 45% and Umean = 1 mm/s.

4.2. Effect of Proteinic Elasticity in the Plasma Layer

Since the non-elastic model of plasma is used extensively in blood flow modeling, we
compare its predictions against those of our l- PTT model to estimate the error involved
in neglecting the elastic contribution of plasma proteins. Although plasma exhibits much
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smaller elasticity than blood, as indicated by the shorter relaxation time of plasma λpl (see
Tables 1 and 3), it can induce significant differences in the stress field response. The latter is
mainly affected by high shear rates or extensional phenomena. These phenomena are absent
in one-dimensional flows but are substantial in more complex flows such as hemodynamics
in arteriole branching, saccular aneurysms, and arterial bifurcations [42,81]. The scope
of this work is limited to examining the crucial features of blood in one-dimensional
flows offering a consistent model for more complex flows and not to probe extensional
flows. Figure 4 illustrates the normal and shear viscoelastic stress profiles for abnormal
hemodynamical conditions characterized by high pressure-gradients J. The prediction of
normal and shear stress in the plasma phase is much higher than that of a Newtonian
model, as depicted in Figure 4a.

Figure 4. (a) Normal viscoelastic stress τve,zz, and (b) Shear viscoelastic stress τve,rz for R = 20 µm,
J = 5× 105 Pa/m, and Hc = 0.45.

4.3. Effect of Radius

Cell migration is an essential part of the mechanism behind both the development of
the CFL formation and the Fåhraeus effect, as it has been stated in the previous sections.
These phenomena are mainly governed by excluded volume effects [82,83] and cell-cell
interactions or collisions [84,85], which are enhanced by aggregation [86,87]. Erythrocytes
appear in two structural forms of individual cells and aggregated cells, the distribution
of which is strongly related to the stress field applied. The dynamic equilibrium shifts
toward more individual cells when the applied shear-rate increases, which affects the
overall configuration of the velocity field, inducing a distinguishable difference between
narrow and wide tubes.

Figure 5 presents the profile of the axial velocity Uz along the radial position r of
the tube, for radius ranging from 10–80 µm for an applied pressure gradient equal to
J = 104 Pa/m. Under these conditions, the dynamics of the system in narrow microtubes
reveals that the velocity is more plug-like compared to wider ones, which is enhanced by
the fact that in small tubes, aggregation is promoted [86]. The discontinuity in the shear
rate between the fluid in the core region and that in the peripheral layer indicates the
presence of the CFL. As the radius increases, the applied shear rates increase too and lead
to a progressive rouleaux breakdown into individual cells promoting a more parabolic
profile, as illustrated in Figure 5. In large tubes, the migration effects are less intense,
and hence the CFL thickness is significantly smaller than that predicted for the narrower
microtubes. When the applied shear stress is higher than the yield stress, the rouleaux
network is broken, and the blood is free to flow like a liquid. This can also be evaluated
by the structure parameter λ, which constitutes an indicator for the instantaneous state of
blood within the tube.
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Figure 5. Axial velocity profile, Uz(r), along the radial position for the tube radius equal to 10 µm,
20 µm, 50 µm, and 80 µm, for J = 104 Pa/m and Hc = 0.45.

Figure 6 demonstrates this thixotropic variable justifying the previous assertion. In
general, blood is predicted to be in a fully structured state near the center of the tube, the
extent of which is highly affected by the applied shear-rates. For very narrow tubes, such
as those of R = 10 µm where the cross-section is comparable to RBC diameter, we observe
two distinct zones with a sharp transition between them. The first zone is the RBC-rich
region characterized by a fully structured state, and the second one is the plasma phase with
λ = 0. It is evident that in this case, aggregation in the core is quite intense as blood does
not demonstrate any change from its initial state and remains fully structured at steady-
state conditions. The higher the imposed pseudo-shear-rate, the narrower is the plug flow
region where blood depicts a fully structured form. At the center of the tube, λ is always
equal to unity since the shear-rate is zero there. On the contrary, as the distance from the
center increases, the shear-rate attains higher values. Consequently, the breakdown term
dominates, enforcing an abrupt decrease in blood aggregates. This behavior is apparent in
microtubes with wider cross-sections where the aggregation of RBCs is relatively weak. In
comparison with the same blood flowing in smaller microtubes, λ attains lower values.

An indicator that demonstrates the deviation of the blunted velocity profile from a
parabolic one is the parameter β. It characterizes the bluntness of the velocity profile in the
core by correlating the average viscosities in the two phases given by

β =
ηb/ηp

1−w2
(

1− ηb/ηp

) (22)

where ηb and ηp are the mean viscosity of the core region and the plasma phase, respectively.

The mean shear viscosity of blood, ηb, is determined as
∫ δ

o

(
τve,rz.
γrz

)
rdr/

∫ δ
0 rdr. Particularly,

a value of β close to zero indicates that the velocity profile is nearly plug, while the
pure parabolic profile is indicated by a β equal to unity, i.e., viscosities in the core and the
plasma layer are the same and equal to the bulk viscosity. Figure 7 reveals that the bluntness
parameter β increases as the diameter of the tube increases; in other words, the deviation
from the parabolic profile decreases as the tube diameter increases. In the same Figure, we
also illustrate the predictions of a two-phase model with a Newtonian representation for
both blood and plasma. As it is expected, our predictions depict a considerable deviation
from the pure Newtonian modeling, demonstrating a blunter profile for values of radius
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below 100 µm. The two curves converge above 100 µm of radius, predicting an almost
equal bluntness parameter as the velocity profile reaches the parabolic form. Notably, our
model predicts that the bluntness of the velocity profile is increased when β drops from
0.9 to 0.3 as well as the tube radius reduces from 120 µm to 10 µm. Further, for 100 µm to
150 µm in radius, the parameter β is increased from 0.9 to 0.96. For further increase of the
radius, β asymptotically reaches unity. Thus, the velocity profile becomes more parabolic
when the tube diameter is increased.

Figure 6. Distribution of the structure parameter λ along the radial position for tube radius equal to
10 µm, 20 µm, 50 µm, and 80 µm, for J = 104 Pa/m and Hc = 0.45.

Figure 7. Variation of the bluntness parameter βwith the tube radius, for J = 104 Pa/m.

Figures 8 and 9 demonstrate the prediction of the viscoelastic stresses for radius equal
to 10 µm, 20 µm, 50 µm, and 80 µm with an imposed pressure gradient of J = 104 Pa/m.
The normal component of the stress tensor (Figure 8) depicts the same pattern for all
examined cases. As the shear rate gradually increases along the radial position, τve,zz
progressively increases from zero to a maximum value, which is strongly dependent on the
local shear rates. The pick of normal stress component is observed at the blood/plasma
interface, followed by an abrupt decrease within the plasma phase. Within the CF Layer,
the normal stress is finite but relatively insignificant compared to that in the core region
for the imposed pressure gradient. A considerable contribution of normal stress in the
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plasma phase should occur under extremely high shear rates. However, the viscoelastic
behavior must not be underestimated. The only observable differentiation in normal stress
predictions for different R is the maximum value at the blood/plasma interface as well as
the phase change location, i.e., the CFL thickness w. The maximum value for each case at
the blood/plasma interface is 21 mPa, 112 mPa, 525 mPa, 914 mPa for 10, 20, 50, and 80 µm
in radius, respectively. In Figure 9, we present the spatial variation of the shear component
of the viscoelastic stress tensor τve,rz for the same rheological conditions. The latter refers
to the total shear stress applied to the system, as we assumed a negligible contribution
from the solvent, highlighting a linear distribution along the radius of the microtube.
Similarly to the normal stress prediction, the magnitude of τve,rz increases with r and R as
a consequence of the appearance of higher values of shear rates. By comparing the maxima
of normal and shear components, we observe that τve,zz is lower than τve,rz up to a tube
radius equal to 20 µm. On the contrary, for cross-sections higher than 50 µm the normal
stress contributes significantly to the total stress and overcomes the contribution of the
shear component. Most of the blood constitutive modelling investigations do not present
the normal stress prediction, and hence we are not able to make a comparison with other
studies. Varchanis et al. [56] in their work reported a significant contribution of normal
stress in simple shear tests and compared their findings with those predicted by the ML-
IKH model [61], which was found to have similar behavior. The presence of normal stresses
in suspensions is attributed to the intense interaction between the particles, whereas in
plasma to protein stretching. Similar arguments are presented by Mall-Gleissle et al. [88]
for suspensions with viscoelastic matrix fluids.

Figure 8. Normal viscoelastic stress τve,zz along the radial position r for the tube radius R equal to
10 µm, 20 µm, 50 µm, and 80 µm for J = 104 Pa/m and Hc = 0.45.

The condition of whether blood is yielded or unyielded is defined through the von
Mises criterion via the parameter ϕ. Figure 10a presents the spatial variation of ϕ along
the radial position r for microtubes of different radii. If the stress components present in
the system are large enough to satisfy the von Mises yielding criterion, the quantity ϕ
acquires non-zero values indicating that the yield stress has been exceeded and blood is
fluidized. On the contrary, a zero value of ϕ indicates unyielded blood, like this depicted
in the case with R = 10 µm. Near the center of this tube, the stresses are insignificant,
resulting in an unyielded region, the size of which depends on the radius of the tube for
the same imposed pressure gradient. Clearly, ϕ = 0 in the CFL. Figure 10b presents the
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relaxation time χ = ηt(λ)
G variation along the radial position r. It is obvious that it follows

similar dynamics with that depicted by the structure parameter due to our assumption that
plastic viscosity depends on the instantaneous state of blood, and thus it is potentially a
thixotropic property.
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Figure 9. Shear viscoelastic stress τve,rz along the radial position r for tube radius R equal to 10 µm,
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As we have already mentioned, the instantaneous state of the blood is defined through
the parameter λ. In the current formulation, we have assumed that our model includes a
stress-controlled structural parameter in the sense that the thixotropic behavior of blood is
controlled by the applied stresses via the von Mises criterion. Figure 11a depicts the steady-
state values of the mean structural parameter λ in the core region of the tube, as a function
of its radius. We observe a continuous deconstruction of the RBCs aggregates as the radius
of the tube increases due to higher shear and extensional stresses (see Figures 8 and 9).
Across the whole range of the examined radii, λ experiences a reduction from λ = 1 for
R = 10 µm to λ = 0.1 for R = 240 µm, with a higher decrease up to 100 µm, while
beyond this point, the average structural parameter continuously seems to approach an
asymptote. Figure 11b shows the variation of the fully structured fraction of the core
region, where λ is equal to unity. In particular, we use the quantity rf, which stands for the
percentage of the structured region out of the radius of the microtube. Also, it is used for
quantifying the extension of the RBC aggregation. Blood aggregability exhibits an almost
continuous reduction as blood flows in larger tubes. Indicatively, in a microtube of radius
equal to R = 10 µm, we observe that fully structured material extends to 30% of R. rf
follows an abrupt reduction when R = 80 µm for which its corresponding value is 6%. As
the radius increases further to 240 µm, rf asymptotes to 5% approximately.

A comparison of our model results against plug flow predictions can be made by
invoking the results of Gupta et al. [89]. They reported the experimental observations
of the velocity profiles in microtubes. In particular, they measured the region for which
the velocity profile follows a plug pattern. Figure 11c reports the experimental data of
Gupta et al. [89] along with our predictions for the normalized plug flow radius rc as a
function of the radius of the microtube. We observe an excellent agreement, from 40 µm up
to 180 µm of radius with an overall deviation of about 4.5%. For tubes with a radius less
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than 40 µm, a non-monotonic behavior can be observed. This is mainly attributed to the
variation of CFL with the radius of the tube, the width of which varies in a similar manner
as rc. At this point, it is necessary to underline the difference of rc and rf. The former is
a feature of the velocity profile and highly correlated with the thickness of the CF Layer,
while the latter represents the region where the RBCs are structured in aggregated forms.

Figure 10. Distribution of (a) Parameter ϕ and (b) Relaxation time χ along the radial position r for
tube radius of 10 µm, 20 µm, 50 µm, and 80 µm for J = 104 Pa/m and Hc = 0.45.

In Figure 11d, we observe the prediction of the steady blood mean relaxation time
χ = ηt/G as a function of the microtube radius R. It exhibits a continuous reduction as
the radius of the tube increases. From R = 10 µm to R = 100 µm the relaxation time
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experiences a steep decrease from χ = 31.4 ms to χ = 13.7 ms, while for wider radii, the
mean value approaches an asymptote. This behavior comes mainly from the fact that we
have considered a plastic viscosity that depends on the instantaneous state of blood. Thus,
as the radius increases, the microstructure of blood is more disintegrated.

Figure 11. (a) Mean structure parameter λ, (b) Fully structured region rf as a percentage of the radius
of the tube R, (c) Normalized plug velocity size rc along with the experimental data of Gupta and
Seshadri [89] for the same quantity and (d) Mean relaxation time χ as a function of the microtube
radius. In all cases J = 104 Pa/m and Hc = 0.45.

One of the most important quantities in blood flow studies is the Wall Shear Stress
(WSS), which is the total shear stress exerted on the microtube’s wall. A proper calculation
of WSS has an exceptional role, especially when blood flows in vivo because it is the
stress applied on the internal Endothelial Cells (EC) surface. Vascular operations such
as biochemical reactions are considerably affected by the WSS as it has been proved to
be directly associated with Nitric Oxide (NO) production [43] and calcium activation in
Smooth Muscle Cells (SMC) [90] by triggering the biochemical reactions that take place in
vascular beds, leading to the regulation of vascular tone [91]. Although in one-dimensional
blood flows, the prediction of WSS is not complex, we offer a consistent model for a proper
prediction of WSS in more complicated flows. Figure 12 shows the distribution of ISS,
WSS, INS, and WNS for different cross-sections of the arteriole for an imposed mean axial
velocity equal to Umean = 1 mm/s. As it is expected, the wall shear stress demonstrates a
non-linear dependence on arteriole radius. As we have neglected the solvent contribution
in the plasma phase, the predicted WSS is related to the pure viscoelastic contribution of the
proteinic phase. For a fixed mean velocity within the tube, the ISS and WSS demonstrate a
gradual decrease until an asymptotic behavior is achieved. Our model predicts a significant
contribution of normal stress for both interfacial and wall locations, which would be crucial
for more complex blood flows such as arterial bifurcation or saccular aneurysms where
the extensional phenomena are intense enough to promote the development of τve,zz. Both
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shear and normal stress components can be expressed as a function of the tube radius R in
µm through a non-linear relationship of the form

sn(R) = an + bnR + cnR2 (23)

with n = 1, 2, 3, 4 refer to ISS, WSS, INS, and WNS respectively. The corresponding coeffi-
cients are presented in Table 5.
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Table 5. Coefficients of Equation (23) for ISS, WSS, INS, and WNS for Umean = 1 mm/s and Hc = 0.45.

Parameters Units Values for ISS Values for WSS Values for INS Values for WNS

an Pa −0.303 −0.417 4.75 0.135
bn Pa/µm 0.0043 0.00697 −0.022 −0.0128
cn Pa/µm2 −2.55× 10−5 −4.43× 10−5 6.42× 10−5 5.37× 10−4

Figure 14 presents the maximum velocity Umax and interfacial velocity Uint as a
function of the microtube radius. As blood flows under a constant pressure gradient in
larger tubes, the axial velocity attains higher values, and hence the predicted maximum
value demonstrates a continuous increase (Figure 14a). However, interfacial velocity does
not exhibit a monotonic behavior, as illustrated in Figure 14b. This is attributed to the
reduction of the aggregation effects, which enhance the transition of the velocity profiles
from plug to parabolic ones. This behavior can also be justified by the predictions of
velocity profiles for the two-phase blood flow in narrow tubes [27,46].

Migration effects in microcirculation are more clearly visible through the variation of
the CFL thickness prediction and the evaluation of the discharged hematocrit. Figure 13
demonstrates the steady-state values of w, Hd and ηrel as a function of the tube radius
R for J = 104 Pa/m and Hc = 0.45. Apparently, the tendency of the erythrocytes to
migrate towards the center of the tube implies an interrelation between the hemodynamical
properties such as the CFL thickness, the discharged hematocrit, and the apparent viscosity.
As the tube radius decreases from 250 µm down to 20 µm, the apparent viscosity (ηrel)
drops due to the CFL formation next to the wall, leading to a decrease in discharged
hematocrit. As the location of the CFL interface is coincident with the region of the
highest shear rate within the flow, the presence of such a layer can significantly reduce
the apparent viscosity. Irrespectively of the pressure drop used in the current simulation,
both quantities are affected considerably by the radius R. Figure 13a demonstrates a non-
monotonic behavior of the computed cell-free layer width across the wide range of the
examined cross-sections. CFL is determined by a balance between lateral migration and
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mass diffusion caused by cell–cell interactions. To this end, as the tube diameter decreases
below a specific value, red cell migration becomes restricted due to strong interaction
between RBCs in the core. This is the reason why we observe the non-monotonic behavior
for the microtubes of radius below 20 µm. Although our continuum model agrees very
well with the empirical observations of Pries et al. [92], it may cease to be valid once the
tube radius becomes comparable to the diameter of the individual RBCs. To validate our
prediction, we invoke the results of a related study in which a different constitutive model
for the description of blood rheology has been used. In that work, Moyers-Gonzalez and
Owens [46] conducted blood flow simulations regarding the CFL thickness under various
hemodynamical conditions. Unfortunately, we are not able to completely compare our
model results with those reported in their work because they simulated blood flows with
different values of the discharged hematocrit and not with its core counterpart. As we
impose a constant value of the core hematocrit in the current work, the only comparable
CFL thickness is that predicted for a microtube with a radius of about 27 µm. At this
radius, the discharged hematocrit predicted by our model is almost equal to 0.2 which
is one of the examined values of the discharged hematocrits in [46]. Our model predicts
w = 5.74 µm, while Moyers-Gonzalez and Owens reported a value equal to 5.68 µm, i.e., a
discrepancy of only 1.04%. As the radius increases from 20 µm to 250 µm the CFL thickness
follows a monotonic decrease as it is expected. When a radius lies in this range, migration
phenomena become inappreciable leading to a more parabolic velocity profile and hence
the apparent viscosity resembles that given by the Poiseuille law. These phenomena seem
to be quite weak above a radius of 180 µm where an asymptote is approached. For a more
detailed description of the interplay between the apparent viscosity and the CFL formation,
the reader is referred to Appendix A. Determining the CFL thickness is of significant
importance not only for a two phase blood flow simulation but also for other processes. To
this end we provide a mathematical expression for the evaluation of w in µm as a function
of the microtube radius R given by

w(R) =
w1 + w2R

1 + w3R + w4R2 (24)

where wk with k = 1, 4 are adjustable parameters, which are presented in Table 6. The
radius R is in µm.

Table 6. Coefficients of Equation (24) for the CFL thickness evaluation.

Parameter Units Values

w1 µm 5.602
w2 − 2.43× 10−2

w3 1/µm −8.48× 10−3

w4 1/µm2 3.56× 10−4

Figure 13b describes the effective migration through the display of the Hd as a function
of the radius of the microtube, corresponding to a fixed value of Hc. It is obvious that a
constant Hc does not imply a constnant Hd for small radii. As it is expected, the increased
CFL thickness in a narrower microtube indicates intensification of the migration of the
erythrocytes, yielding a considerably lower value of the discharged hematocrit correspond-
ing to a core hematocrit equal to 45%. Indicatively, from 10 µm up to 67 µm of radius, we
observe a remarkable increase of Hd from an extremely low value of about 0.135 to 0.44,
respectively. Consequently, it is safe to claim that above a 70 µm radius, the migration
effects are relatively insignificant when blood flows in vitro.
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Figure 14. (a) Maximum axial velocity Umax, and (b) Interfacial axial velocity Uint as a function of
tube radius R for J = 104 Pa/m and Hc = 0.45.

4.4. Effect of Pressure Gradient

Another significant model parameter is the flow rate or the applied pressure-gradient
because it impacts the velocity profile [93] and, consequently, the instantaneous state of
blood microstructure. In the following Figures, we demonstrate the effect of the imposed
pressure gradient J on the velocity profile, the viscoelastic stress distribution, and the
steady structure parameter λ. The simulation refers to a microtube with a radius of
R = 20 µm while the pressure gradient ranges from 102 Pa/m to 105 Pa/m with a constant
core hematocrit equal to Hc = 0.45.



www.manaraa.com

Materials 2021, 14, 367 24 of 36

Figure 15 demonstrates the steady-state profile of the axial velocity Uz along the
radial position r, when blood flows under the aforementioned rheological conditions. As
it is expected, the imposed pressure gradient affects the bluntness of the velocity profile,
indicating a plug-like flow for and a more parabolic-like behavior for J = 105 Pa/m.
However, the variation is limited to profile skewness and the magnitude of the maximum
velocity. Particularly, as the bluntness of the profile increases, the axial velocity field
acquires higher values. However, the CFL thickness remains nearly constant, as it is
implied by the experimental observations of Pries et al. [73], who argued that migration
effects are not significantly affected by the applied shear rates.

Figure 15. Axial velocity profile along the radial position for pressure gradient J equal to 102 Pa/m,
103 Pa/m, 104 Pa/m, and 105 Pa/m for R = 20 µm and Hc = 0.45.

To further elucidate the impact of the pressure gradient on the rheological behavior
of blood, we present the steady-state values of the structure parameter distribution along
the radial position of the tube r (Figure 16). For all imposed pressure gradients, the blood
is initially at rest with λ|t=0 = 1. Beginning from the same state, we distinguish four
different responses of the blood regarding its final microstructural configuration. When
J = 102 Pa/m and J = 103 Pa/m, blood does not exhibit any change from its initial
state, meaning that the stress has not exceeded the yield-stress value to disintegrate the
rouleaux. Thus, in these cases, we have two distinct areas, a core region with λ = 1,
and a plasma phase with λ = 0. Further increase of pressure gradient causes a partial
deconstruction of rouleaux. Particularly, for a pressure gradient equal to J = 104 Pa/m, λ
demonstrates a monotonic decrease from 1 to 0.48. It is obvious that the total stress near
the center of the tube does not surpass the blood yield stress, and thus, blood remains in an
unstructured state. Interestingly, with an imposition of a pressure gradient of one order of
magnitude higher than the previous one, the thixotropic parameter λ experiences a steep
decrease caused by the higher stress applied. In the vicinity of the blood/plasma interface,
where the shear rates are high, the structure parameter approaches an asymptote at a low
value. The size of the region where λ has an almost constant value is associated with the
imposed pressure-gradient. The higher the J, the wider the region where λ is maintained
at a constant low value. This is more obvious in the case with J = 105 Pa/m, where the
microstructure of blood demonstrates a significant collapse. Here, blood has a constant
value of about λ = 0.13 from 8 µm to 13.6 µm. In any case, blood never becomes fully
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unstructured in the core region, i.e., λ never reaches 0, irrespective of the intensity of the
imposed pressure gradients.

Figure 16. Distribution of the structure parameter λ along the radial position for different pressure
gradients J equal to 102 Pa/m, 103 Pa/m, 104 Pa/m, and 105 Pa/m, for R = 20 µm and Hc = 0.45.

Figure 17 shows the normal viscoelastic stress distributions for different pressure
gradients. An increase in J from 102 Pa/m to 105 Pa/m causes an increase in stress mag-
nitude in both core and plasma regions. Regarding the RBC-rich central region, τve,zz
demonstrates a continuous non-linear increase as the distance from the center is increased
too. In the plasma phase, we can observe that the developed stress is quite insignificant,
but when blood flows at higher velocities, as those depicted by the case with J = 105 Pa/m,
our model predicts an observable contribution of normal stress in the plasma phase. In
this case, the rheological behavior is quite reasonable as we do not expect a considerable
viscoelastic contribution from plasma. However, further increase in J yields a considerable
normal stress distribution along the plasma layer, which is comparable to that predicted
for the RBCs. This observation is in excellent agreement with the findings in the work of
Varchanis et al. [60]. They predicted a pronounced normal stress, caused by the extension
of plasma proteins, especially in high shear rates. This extra elastic contribution to the
rheological response of whole blood may have a significant impact on the red blood cell de-
formation and interaction when flowing in microtubes. The effect of the pressure gradient
on the viscoelastic shear stress distribution is presented in Figure 18. As expected, τve,rz
implies a linear dependence on the radial position r along the tube as it is the total stress,
the magnitude of which is strongly associated with the imposed pressure gradient.
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Figure 17. Normal viscoelastic stress τve,zz along the radial position for pressure gradient J equal to
102 Pa/m, 103 Pa/m, 104 Pa/m, and 105 Pa/m, for R = 20 µm and Hc = 0.45.
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Figure 19a presents the ϕ parameter for different pressure gradients. It reveals that
the pressure gradient has a significant impact on the state of blood regarding its yielded
or unyielded regions. Since plasma does not demonstrate plasticity, ϕ has a dual role
indicating both the unyielded blood and the absence of plasticity in the annulus region.
For the lowest imposed J, the predicted behavior implies that ϕ = 0 throughout the tube,
i.e., unyielded blood. Increasing J to J = 103 Pa/m, results in partial fluidization with
an unyielded region up to 6 µm of the tube and a yielded region from this point up to
the phase change location δ. On the contrary, the remaining two cases depict the total
fluidization of blood. Although, the transition from the unyielded

(
J = 102 Pa/m

)
to

completely yielded blood
(
J = 104 Pa/m

)
is quite steep, under intermediate conditions
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we would observe situations with partial fluidization. For the cases with J = 103 Pa/m
to J = 105 Pa/m, the region with zero ϕ is the plasma layer which is totally yielded
demonstrating zero plasticity.

The developed stresses are quite sensitive to pressure gradient imposition, as it is
depicted in Figure 20a,b, which demonstrates the viscoelastic stresses at the blood/plasma
interface and on the microtube wall. We can observe the monotonic variation of stress
when the pressure gradient is ranging between 10 Pa/m to 105 Pa/m for a microtube with
a radius equal to R = 20 µm and a constant core hematocrit equal to Hc = 0.45. From
Figure 20a, we can see that ISS is always lower than the WSS. In Figure 20b, INS attains
higher values than WNS does, as it is expected. The viscoelastic contribution of blood is
more significant than that of pure plasma, and therefore, we cannot observe any excess
of WNS.
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Figure 19. (a) Parameter ϕ along the radial position and (b) Relaxation time χ for different pressure
gradients J equal to 102 Pa/m, 103 Pa/m, 104 Pa/m, and 105 Pa/m for R = 20 µm and Hc = 0.45.
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Figure 20. Prediction of (a) shear (ISS & WSS) and (b) normal (INS & WNS) interfacial and wall
viscoelastic stresses as a function of the pressure gradient J for R = 20 µm and Hc = 0.45.

Figure 21 demonstrates the prediction for the interfacial velocity Uint and the maxi-
mum attainable velocity at the center of the tube Umax under the aforementioned rheologi-
cal conditions. For low-pressure gradients up to 103 Pa/m, the velocity profiles are almost
plug and thus the Umax and the Uint acquire the same values. As the imposed pressure
gradient increases, we observe that the two curves begin to deviate from each other up to
J = 105 Pa/m where the velocity profile tends to be parabolic, the predictions for the Umax
and the Uint are 5.49 mm/s and 3.33 mm/s, respectively.

Figure 21. Maximum Umax and interfacial velocity Uint as a function of pressure gradient J for
R = 20 µm and Hc = 0.45.

In Figure 22a,b, we illustrate the mean microstructural configuration λ and the plug
flow radius rc, respectively. The flow conditions correspond to a pressure gradient range of
10–105 Pa/m, for microtube with a radius of R = 20 µm with a constant core hematocrit
equal to Hc = 0.45. Regarding Figure 22a, we can observe a quite expectable dependence
of the mean structural variable on the pressure gradient J. For extremely low-pressure
gradients, and hence low flow rates, the blood structure presents no change from the
initial fully structured state up to a critical value of about J = 103 Pa/m. From this point
onward, the microstructure of blood starts to disintegrate, and λ experiences an abrupt and
continuous reduction from 1 to 0.25. From Figure 22b, we can observe that the prediction
of the normalized plug-flow radius rc as a function of the imposed pressure gradient is
quantitatively similar to that presented for the mean value of λ (Figure 22a). Particularly,
we observe two distinct responses of blood regarding the normalized region for which the
blood velocity presents a plug profile. Initially, for low-pressure gradients, the velocity
profile is plug throughout the core region, and hence the rc is constant and about 0.68. As
the pressure gradient increases from J = 103 Pa/m to J = 105 Pa/m the velocity profile
gradually obtains a more parabolic pattern, and thus the plug flow region is reduced
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dramatically to rc = 0.32, which corresponds to the extreme pressure gradient value of our
simulations.

Figure 22. (a) Mean structure parameter λ, (b) Normalized plug-flow radius rc as a function of the
pressure gradient J for R = 20 µm and Hc = 0.45.

5. Conclusions

This work presents steady-state predictions of blood flow in microtubes incorporating
a two-layer fluid model consisting of an outer annulus filled with plasma and an inner RBC-
rich core. Two constitutive formulations are employed, a thixotropic elasto-visco-plastic
(TEVP) model for the blood core and a viscoelastic (linear-PTT) for the plasma, offering
a holistic formulation for the accurate two-phase rheological behavior of blood/plasma
in microtubes. The blood model was parameterized by Giannokostas et al. [4], using
the hemorheological data of donors with 45% core hematocrit [55]. This is the first time
that a TEVP model is validated in non-rheometric flows or flows with spatial variation
of the velocity and the stress fields. The model is accompanied with CFL existence via
empirical expressions of Pries and Secomb [92], and we have proposed a new simplified
form (Equation (20)) compared to that provided by Pries et al. [74] for the description of the
apparent viscosity. We present the predictions of the new analytical relationship of the CFL
thickness with the radius of the tube. Comparison with experiments enables us to claim that
our formulation constitutes a consistent model capable of successfully addressing complex
blood flow behavior in narrow microtubes. In particular, we compared our predictions with
experimental data of velocity profiles [76], cell-free layer thickness [5,77,78], as well as wall
shear-stress measurements [79], obtaining an excellent agreement. We offered a thorough
parametric analysis examining the impact of the microtube diameter as well as the pressure
gradient on velocity profiles, normal and shear viscoelastic stresses, and the structural state
of blood. Among the findings, we can summarize those that are of greater importance.
Elasticity is found to have a significant impact on both RBCs and plasma phases. The
normal stress field would be important in flows with a high flow rate or where extensional
phenomena are quite intense. Additionally, elasticity provoked considerable discrepancies
between TEVP and Casson predictions regarding the flow rate and the interfacial velocity.
It was shown that the radius of the tube and the pressure gradient have a significant
impact on the configuration of the internal structure of blood. For narrow microtubes, the
aggregation was intense, the blood state was almost fully structured, leading to a blunted
velocity profile. In addition, the relaxation time of the blood was also affected by the radius
of the tube depicting higher values for narrower microtubes. As the location of the CFL is
coincident with the region of the highest shear rate within the flow, the presence of such a
layer was found to reduce the apparent viscosity significantly. Our model encompassed
migration through a hemodynamical mathematical description, which was verified by
experimental evidence and hence was able to predict the variation in local hematocrits
accurately. For a small microtube, the model predictions implied a considerable reduction
in discharged hematocrit due to migration effects, which in some cases is up to 70% and was
proved to be invariant with the pressure gradient. The pressure gradient had a significant
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impact on the velocity profile and the mean microstructure of blood. We show a transition
from totally unyielded to fully yielded blood with intermediate states of partial fluidization.
The size of each region is linked with the imposed pressure gradient. The reduction of the
blood structure λwithin a reasonable range of pressure gradient was almost 80%.
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Appendix A

The reduced form of the z-component of Equation (1) in cylindrical coordinates is
given by

ρ(1) ∂Uz
(1)

∂t = − ∂P
∂z + 1

r
∂
∂r

(
r τve,rz

(1)
)

r ∈ [0, δ] (A1)

ρ(2) ∂Uz
(2)

∂t = − ∂P
∂z + 1

r
∂
∂r

(
r τve,rz

(2)
)

r ∈ [δ, R] (A2)

where the first equation refers to the blood-core region, while the second one to the
blood plasma in the annulus. Uz

(1) and Uz
(2) are the velocities of the core region and

plasma in the z-direction, respectively, τve,rz
(1) and τve,rz

(2) are the shear components of the
viscoelastic stress tensor in core and plasma phases, respectively, ∂P

∂z is the pressure drop in
the z-direction, and δ is the location of the blood/plasma interface. ρ(1) and ρ(2) are the
densities of the blood and plasma equal to 1060 Kg/m3 and 1025 Kg/m3, respectively. It
must be pointed out that a two-phase representation is mandatory not only for the distinct
rheological description of each phase but also for the prediction of the interface position
and, consequently, the computation of the cell-free layer (CFL) thickness w = R− δ. We
also impose two boundary conditions for the velocity, a zero gradient at the center of the
tube and a no-slip condition on the wall given by

∂Uz
(1)

∂r

∣∣∣∣∣
r=0

= 0 (A3)

Uz
(2)
∣∣∣
r=R

= 0 (A4)

At the blood/plasma interface, we impose continuity conditions for both stress and
velocity as

τve,rz
(1)
∣∣∣
r=δ

= τve,rz
(2)
∣∣∣
r=δ

(A5)

Uz
(1)
∣∣∣
r=δ

= Uz
(2)
∣∣∣
r=δ

(A6)

As we have a moving boundary problem, due to the unknown location of the
blood/plasma phase, the equations are solved in a transformed computational domain
with fixed boundaries, and the solution is transformed back to the physical domain. The
reduced one-dimensional forms of the constitutive law for the shear

(
τve,rz

(1)
)

and normal(
τve,zz

(1)
)

components of the stress tensor in the core are given by
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Accordingly, the components of the polymeric stress tensor for the plasma phase are
given by

τve,rz
(2) =

ηpl

1 +
εPTT,pl λpl
ηpl

τve,zz(2)

∂Uz
(2)

∂r
(A9)
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ηpl

(
τve,rz

(2)
)2

(A10)

Appendix B

The original form of the empirical description of the in vitro apparent viscosity ex-
periments has been given by Secomb & Pries [94]. They assembled results from several
studies, and they developed algebraic relationships to describe the dependence of the rela-
tive apparent viscosity ηrel (the ratio of the apparent viscosity to the suspending medium
viscosity) on tube diameter and discharged hematocrit as

η0.45(D) = 3.2 + 220 exp( −1.3 D)− 2.44 exp
(
−0.06D0.645

)
(A11)

C(D) = (0.8 + exp(−0.075D))

(
−1 +

1
1 + 10−11D12

)
+

1
1 + 10−11D12 (A12)

ηrel(Hd, D) = 1 + (η0.45(D)− 1)

(
(1−Hd)

C(D) − 1

(1− 0.45)C(D) − 1

)
(A13)

where D is the diameter of the tube in µm, and C a dimensionless function of D. The
apparent viscosity for a typical discharged hematocrit in humans Hd = 0.45, η0.45, is given
by Equation (A11). The variable C (Equation (A12)) describes the type of dependence
of the relative viscosity on the hematocrit, which is approximately linear for diameters
up to about 8 µm, but shows a highly nonlinear dependence at large diameters. Finally,
the expression of relative apparent viscosity ηrel is given by Equation (A13) based on
the aforementioned quantities. This set of equations is much more complex compared
to our proposed expression for the relative apparent viscosity given by Equation (20).
Additionally, the dependence of parameter C on D12 is quite unreliable, and prone to large
errors. The prediction of the relative apparent viscosity with respect to the tube diameter
for different values of discharge hematocrit, according to our equation, is illustrated in
Figure A1a along with the corresponding experimental data given by Pries and Secomb [3].
The trend of the apparent viscosity to decrease with reducing the tube diameter continues
down to about 7 µm. At smaller diameters, the relative apparent viscosity rises rapidly
as the diameter approaches a critical minimum diameter, which is about 3 µm. Although
highly deformable, RBCs are subject to constraints of constant volume and almost constant
surface area. These constraints prevent passage of intact cells through tubes narrower than
this critical diameter. As diameter increases, the relative viscosity attains higher values
which tend to asymptotically reach the relative viscosity given by Poiseuille’s law for a
Newtonian fluid. Figure A1b illustrates the predictions of cell-free layer thickness in µm
with respect to the tube diameter and for different imposed core hematocrits. As our



www.manaraa.com

Materials 2021, 14, 367 32 of 36

analysis is valid only for a certain value of core hematocrit that of 45%, we provide the pre-
dictive capability of Equation (20) using the Casson model (Equation (12), Table 2) [63] for
hematocrit values between 10% to 60%. The predictions are compatible with experimental
indications exhibiting a continuous decrease as the diameter of the tube increases. At high
cross-sections, the CFL thickness asymptotically reaches a small but finite constant value,
depending on the imposed core hematocrit.

Figure A1. (a) The predictions of our proposed expression (Equation (20)) for relative apparent
viscosity against experimental data reported by Pries and Secomb [73]. (b) Cell-free layer variation
with respect to the tube radius and different values of core hematocrit based on Equation (20) for two
different constitutive models applied in the core-annular flow problem described in Section 2.

Appendix C

Our model is inherently transient, in the sense that there exists an infinitude of steady
states, which depend in a continuous manner on the initial conditions and state. Even if
it is just the steady-state that is sought, one cannot simply discard the time derivatives;
the steady-state must be obtained by a time integration with appropriate initial conditions.
The initial conditions imposed for the solution of the governing equations are those cor-
responding to initially unyielded and unperturbed blood. To this end, we assume a zero
stress field (τve,rz

(i)
∣∣∣
t=0

= τve,zz
(i)
∣∣∣
t=0

= 0) and velocity field (Uz
(i)
∣∣∣
t=0

= 0), while the

structure variable is assumed to be unity (λ| t=0 = 1).

Figure A2. Time evolution of (a) axial velocity Uz, and (b) structure parameter λ from fully structured
state to steady-state.

The evolution of the profile of the axial velocity Uz is presented in Figure A2a for
five-time instances. During the transient simulation, the velocity field is gradually formed
from zero state to a blunted profile at a steady-state, as it is indicated by the respective
symbols in the graph. As time increases, the velocity attains a higher flow rate with larger
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bluntness and lower CFL thickness. Figure A2b illustrates the evolution of the structure
parameter λ for a radius equal to R = 50 µm and a pressure drop equal to J = 104 Pa/m
to achieve steady-state conditions. The initial state for λ is λ| t=0 = 1 so that the blood is not
affected by any prior history effect. The stresses develop rapidly, leading to a continuous
breakdown of blood rouleaux and consequently promote a decrease of λ. Gradually, more
of the material acquires values below unity until the steady-state is achieved, and a small
region near the center of the tube still retains its original state of the fully structured
configuration. The size of this region is clearly dependent on the imposed flow conditions
and especially on the magnitude of the pressure gradient and, consequently, on the applied
shear-rates. The higher the developed shear-rates, the narrower is the region of a fully
structured state. Apparently, as shear-rate attains higher values, the bulk configuration of
λ acquires lower values in the sense that the blood is getting softer, and the microstructural
destruction is higher. Irrespective of the intensity of shear rate, λ never reaches 0, but
asymptotes to zero for extreme values of the shear-rate. In other words, the blood never
becomes fully unstructured. Additionally, the fully structured region is always present, no
matter how shear-rate increases.
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